🐋
Moby
  • Let’s Get Started
    • 🐋 About Moby
    • ⚡ Our Vision
    • 🤓 Your Guidebook
      • Get Setup
        • Connect Wallet
        • Trade Options
        • 0DTE Options
        • Provide Liquidity
      • Fees & Instruments
        • Fee Generation
        • Fee Distribution
        • Instruments
      • Testnet
  • How it’s Built
    • 🚀 Synchronized Liquidity Engine (SLE)
    • 🧮 Options Pricing Model
      • Mark Price
        • Futures Index
        • Implied Volatility
      • Risk Premium
        • Deriving Greeks
        • Risk Premium Calculation
        • Risk Managing Mechanism
    • 🤖 Architecture
      • Liquidity Provision Mechanism
      • Options Listing Standard
      • How to Open / Close / Settle Position
      • Synchronized Liquidity Engine (SLE)
      • Options Position Tokens
      • Tools to Maximize Capital Efficiency
    • ⚙️ Key Features
      • High Leverage & Limited Risk with No Liquidation
      • Narrow Spread with Dynamic Risk Premium
      • Guaranteed Settlement
      • Capital Efficiency Improvements with Combo Options
      • Even Higher Capital Efficiency with Clearing House
      • Abundant Liquidity for All Options
      • Composable Options for Structured Products
      • High Profitability for LPs
      • Real-Time Automatically Hedged OLP
      • Upcoming Features
    • ⛓ DeFi Options Vault
      • 🐻 Berachain DeFi Options Vault
        • 🔒 Architecture
        • 📈 Options Strategy
  • How it’s Driven
    • 🛡️ Building the Safest DeFi Protocol
      • Safety Features
      • Smart Contract Audit & Real-Time Security Monitoring
    • 🏛 Backed by Decentralized Governance
      • Governance
    • 🌐 Led by the Best Partners & Community
      • Arbitrum X Moby
      • Engagement Programs
  • Need More Info?
    • 📚 Resource Library
      • Developer Resources & Educational Contents
      • Terms & Conditions
      • Glossary
      • FAQ
  • Developers
    • Moby Traders API
      • REST API
        • General
        • Account
        • Market
    • Trade Scripts
      • Prerequisites
      • Open Positions
      • Close Positions
    • Interfaces & ABI
      • PositionManager.sol
      • SettleManager.sol
      • RewardRouterV2.sol
      • OptionsMarket.sol
    • Appendix 1: Parameters for Open/Close Options
    • Appendix 2: the Diff between optionId and optionTokenId
    • Appendix 3: Sample Moby Contract Module for Developers
Powered by GitBook
On this page
  • Deriving Greeks
  • Delta
  • Gamma
  • Theta
  • Vega
  1. How it’s Built
  2. 🧮 Options Pricing Model
  3. Risk Premium

Deriving Greeks

PreviousRisk PremiumNextRisk Premium Calculation

Last updated 1 year ago

Deriving Greeks

The Greeks of OLP and the Greeks of specific options positions are also calculated using the Black-76 model. Options' Greeks are used for calculating Execution Price of options, determining the Bid/Ask implied volatility, and monitoring OLP risk.

P : Size and directionality of the requested option position by the trader (Long : + / Short : -)

F : Futures price of the underlying asset adjusted for the expiration date

σ : log-normal with constant volatility

r : Risk-free interest rate

K : Strike price

T : Time to maturity

Delta

Call Delta=P×N(d1)\begin{aligned} & Call \ Delta = P \times N(d_1) \end{aligned}​Call Delta=P×N(d1​)​
Put Delta=P×(N(d1)−1)\begin{align*} & Put \ Delta = P \times (N(d_1) - 1) \end{align*} ​Put Delta=P×(N(d1​)−1)​

Gamma

Theta

Vega

Gamma=P×N′(d1)F×σ×T\begin{align*} & Gamma = \frac{P \times N'(d_1)}{F \times \sigma \times \sqrt{T}} \end{align*} ​Gamma=F×σ×T​P×N′(d1​)​​
Theta=−P×F×N′(d1)×σ2×T\begin{align*} & Theta = -P \times \frac{F \times N'(d_1) \times \sigma}{2 \times \sqrt{T}} \end{align*} ​Theta=−P×2×T​F×N′(d1​)×σ​​
Vega=P×(F×T×N′(d1))\begin{align*} & Vega = P \times (F \times \sqrt{T} \times N'(d_1)) \end{align*}​Vega=P×(F×T​×N′(d1​))​
Where,Where,Where,
d1=ln⁡(FK)+(σ2/2)TσT\begin{align*} & d1 = \frac{\ln(\frac{F}{K}) + (\sigma^2 / 2)T}{\sigma\sqrt{T}} \end{align*}​d1=σT​ln(KF​)+(σ2/2)T​​
d2=ln⁡(FK)−(σ2/2)TσT=d1−σT\begin{align*} & d2 = \frac{\ln(\frac{F}{K}) - (\sigma^2 / 2)T}{\sigma\sqrt{T}} = d1 - \sigma\sqrt{T} \end{align*}​d2=σT​ln(KF​)−(σ2/2)T​=d1−σT​​
N(x)=Cumulative Normal Distribution Function\begin{align*} & N(x) = \text{Cumulative Normal Distribution Function} \end{align*} ​N(x)=Cumulative Normal Distribution Function​
N′(x)=e−x222π\begin{align*} & N'(x) = \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} \end{align*} ​N′(x)=2π​e−2x2​​​